Environmental Science & Technology

Just Accepted Manuscripts

Plastic as a carrier of POPs to aquatic organisms: A model analysis.
Albert Aart Koelmans, Ellen Besseling, Anna Wegner, and edwin M. Foekema
Environ. Sci. Technol., Just Accepted Manuscript
DOI: 10.1021/es401169n
Publication Date (Web): June 11, 2013
Abstract
It has been hypothesised that persistent organic pollutants (POPs) in microplastic may pose a risk to aquatic organisms. Here, we develop and analyse a conceptual model that simulates the effects of plastic on bioaccumulation of POPs. The model accounts for dilution of exposure concentration by sorption of POPs to plastic (POP ‘dilution’), increased bioaccumulation by ingestion of plastic containing POPs (‘carrier’), and decreased bioaccumulation by ingestion of clean plastic (‘cleaning’). The model is parameterised for the lugworm Arenicola marina and evaluated against recently published bioaccumulation data for this species from laboratory bioassays with polystyrene microplastic. Further scenarios include polyethylene microplastic, nano-sized plastic and open marine systems. Model analysis shows that plastic with low affinity for POPs, like polystyrene will have a marginal decreasing effect on bioaccumulation, governed by dilution. For stronger sorbents like polyethylene, the dilution, carrier and cleaning mechanism are more substantial. In closed laboratory bioassay systems, dilution and cleaning dominate, leading to decreased bioaccumulation. Also in open marine systems a decrease is predicted due to a cleaning mechanism that counteracts biomagnification. However, the differences are considered too small to be relevant from a risk assessment perspective.

Life in the ‘Plastisphere’: Microbial communities on plastic marine debris
Erik Red Zettler, Tracy J. Mincer, and Linda A. Amaral-Zettler
Environ. Sci. Technol., Just Accepted Manuscript
DOI: 10.1021/es401288x
Publication Date (Web): June 7, 2013
Abstract
Plastics are the most abundant form of marine debris, with global production rising and documented impacts in some marine environments, but the influence of plastic on open ocean ecosystems is poorly understood, particularly for microbial communities. Plastic Marine Debris (PMD) collected at multiple locations in the North Atlantic was analyzed with Scanning Electron Microscopy (SEM) and next-generation sequencing to characterize the attached microbial communities. We unveiled a diverse microbial community of heterotrophs, autotrophs, predators, and symbionts, a community we refer to as the “Plastisphere.” Pits visualized in the PMD surface conformed to bacterial shapes as suggesting active hydrolysis of the hydrocarbon polymer. Small-subunit ribosomal RNA gene surveys identified several hydrocarbon-degrading bacteria, supporting the possibility that microbes play a role in degrading PMD. Some Plastisphere members may be opportunistic pathogens such as specific members of the genus Vibrio that dominated one of our plastic samples (the authors, unpublished data). Plastisphere communities are distinct from surrounding surface water, implying that plastic serves as a novel ecological habitat in the open ocean. Plastic has a longer half-life than most natural floating marine substrates, and a hydrophobic surface that promotes microbial colonization and biofilm formation, differing from autochthonous substrates in the upper layers of the ocean.


Articles ASAP

Microplastic Ingestion by Zooplankton
Matthew Cole, Pennie Lindeque, Elaine Fileman, Claudia Halsband, Rhys Goodhead, Julian Moger, and Tamara S. Galloway
Environ. Sci. Technol., Article ASAP
DOI: 10.1021/es400663f
Publication Date (Web): May 21, 2013
Abstract
Small plastic detritus, termed “microplastics”, are a widespread and ubiquitous contaminant of marine ecosystems across the globe. Ingestion of microplastics by marine biota, including mussels, worms, fish, and seabirds, has been widely reported, but despite their vital ecological role in marine food-webs, the impact of microplastics on zooplankton remains under-researched. Here, we show that microplastics are ingested by, and may impact upon, zooplankton. We used bioimaging techniques to document ingestion, egestion, and adherence of microplastics in a range of zooplankton common to the northeast Atlantic, and employed feeding rate studies to determine the impact of plastic detritus on algal ingestion rates in copepods. Using fluorescence and coherent anti-Stokes Raman scattering (CARS) microscopy we identified that thirteen zooplankton taxa had the capacity to ingest 1.7–30.6 μm polystyrene beads, with uptake varying by taxa, life-stage and bead-size. Post-ingestion, copepods egested faecal pellets laden with microplastics. We further observed microplastics adhered to the external carapace and appendages of exposed zooplankton. Exposure of the copepod Centropages typicus to natural assemblages of algae with and without microplastics showed that 7.3 μm microplastics (>4000 mL–1) significantly decreased algal feeding. Our findings imply that marine microplastic debris can negatively impact upon zooplankton function and health.


February 5, 2013 (Volume 47, Issue 3, pp. 1181–1774)

Long-Term Field Measurement of Sorption of Organic Contaminants to Five Types of Plastic Pellets: Implications for Plastic Marine Debris

Chelsea M. Rochman, Eunha Hoh, Brian T. Hentschel, and Shawn Kaye
Environmental Science & Technology 2013 47 (3), 1646-1654
DOI: 10.1021/es303700s
Publication Date (Web): December 27, 2012
Abstract
Concerns regarding marine plastic pollution and its affinity for chemical pollutants led us to quantify relationships between different types of mass-produced plastic and organic contaminants in an urban bay. At five locations in San Diego Bay, CA, we measured sorption of polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) throughout a 12-month period to the five most common types of mass-produced plastic: polyethylene terephthalate (PET), high-density polyethylene (HDPE), polyvinyl chloride (PVC), low-density polyethylene (LDPE), and polypropylene (PP). During this long-term field experiment, sorption rates and concentrations of PCBs and PAHs varied significantly among plastic types and among locations. Our data suggest that for PAHs and PCBs, PET and PVC reach equilibrium in the marine environment much faster than HDPE, LDPE, and PP. Most importantly, concentrations of PAHs and PCBs sorbed to HDPE, LDPE, and PP were consistently much greater than concentrations sorbed to PET and PVC. These data imply that products made from HDPE, LDPE, and PP pose a greater risk than products made from PET and PVC of concentrating these hazardous chemicals onto fragmented plastic debris ingested by marine animals.